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Abstract

Unreplicated fractional factorial experiments with response modeled
with Generalized linear models (GLM) are found more and more frequently
in industrial applications. GLM analysis relies heavily on large sample
results. This paper presents a Bayesian method for detecting the active
effects in unreplicated factorial experiments analyzed by a GLM that does
not require the large sample assumption. The proposed method is based
on Bayesian model selection. In the examples shown, the Bayesian method
produces more consistent results than inference based on Wald’s test, and
in a simulated example the usual approach brakes down while the Bayesian
method identifies the significant effects correctly. The method is presented
for the 2k experiments, but it can easily be generalized to other designs.

Key Words: Bayesian Information Criteria, Bayesian Selection of Mod-
els, Posterior Probabiliy, Quasi-Monte Carlo Simulation, Significant Ef-
fects, Small Sample Analysis, Unreplicated Factorial.
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1. Introduction

The problem of detecting the active effects in unreplicated two-level factorial ex-
periments with normal responses is a challenge because, in the saturated case,
there are not enough degrees of freedom to estimate the error variance. Conse-
quently, standard F tests cannot be used to identify the active effects.
One of the earliest and better known methods for the analysis of unreplicated

designs with normal response was proposed by Daniel (1959) and consists of draw-
ing the estimated effects on a normal probability plot. On the graph, the effects
that fall along a straight line through the origin are assumed to be inactive and
normally distributed with mean zero and constant variance, while the active ef-
fects tend to fall off the line. The subjectivity of Daniel´s method, has attracted
much attention since the 1980´s, see Hamada and Balakrishnan (1998). There
are now more than 40 methods that attempt the objective detection of the active
effects in unreplicated factorial experiments with normal response. It is important
to say that most of the methods rely on the sparsity principle, according to which
only a small proportion of the effects are expected to be active.
One of such methods is by a Bayesian approach originally proposed by Box and

Meyer (1986), which computes the posterior probability of each possible model
that can be constructed from the estimated effects, and from here, marginalizing,
obtains the posterior probability of each effect or coefficient. The coefficients with
posterior probabilities greater than 0.5 are considered as candidates to be active
effects, see also Box and Meyer (1993).
In many industrial experiments the response variable is not normaly distrib-

uted. Notably, when the data are counts or proportion of defectives, or the re-
sponse may have an skewed distribution, see Lewis, et al. (2001). The traditional
approach for analyzing such data is to apply a variance-stabilizing transformation
to the response variable, and then use ordinary least squares with the transformed
data. Hopefully the transformation will also induce normality and constancy of
variance on the response and simplify the empirical model. Another approach is to
use a generalized linear model (GLM), in which the normality and constant vari-
ance is no longer required, Myers and Montgomery (1997); Hamada and Nelder
(1997).
When the GLM approach is used in the analysis of nonnormal responses in

unreplicated (or replicated) factorial experiments the inference about the effects
is based on the asymptotic properties of the maximum likelihood estimator. Typ-
ically the unreplicated experiments have a small number of observations and it is
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not clear how the asymptotic inference performs in this situation. With the pur-
pose of detecting the active effects, Myers, et. al. (2002) recommend the normal
probability plot of the coefficients estimates divided by their standard errors. Al-
though the interpretation of the graph is subjective, it is very useful for identifying
active effects, except when the correlations between the estimates is large, because
in that case the estimator of an active effect may pull the corresponding estimator
of a non significant effect and make it look as if it were significant. The reverse
situation may also happen. In GLM the estimators may not be independent even
if the design matrix is orthogonal. Myers, et al. (2002) show some examples of
this situation, see for instance Example 7.5, where the response is number of grille
defects in an unreplicated 2n−p experiment, the correlation matrix for the log link
(given in Table 7.25) contains several "ones" which should be interpreted as very
highly correlated estimators .
This paper proposes a Bayesian method for detecting active effects in an un-

replicated factorial experiment analyzed by a GLM. The idea is to generalize the
Box and Meyer (1993) method to the case GLM. The proposed method is based
on Bayesian model selection, an important research topic in the Bayesian litera-
ture, see for example, Raftery (1995, 1999), also used for doing Bayesian model
averaging, Hoeting, et. al. (1999), Clyde (1999).
Section 2 gives a brief account of the GLM. Section 3 presents the basics of

Bayesian model selection, a procedure that requires the computation of the prior
predictive density (ppd) for a series of models. Section 4 provides two methods
for computing the ppd. The first one aims at the direct computation of the ppd
and hence requires the elicitation of a prior distribution of the parameters of the
model, while the second one uses a Laplace approximation for the ppd and avoids
the explicit definition of a prior distribution. Section 5 shows the implementation
of the approach to experiments where the response has a Poisson distribution.
This section also shows the application of the procedure to the car grille example.
Section 6 gives the instrumentation of the idea to the case when the response
has a binomial distribution. This section gives two examples, in the first one
the frequentist and Bayesian analysis agree, but in the second one the frequentist
analysis brakes down while the Bayesian analysis correctly detects the significant
effects . Section 7 deals with the gamma distribution, this model differs from
the other two because requires the elicitation of an extra parameter. Section 8
provides the concluding remarks.

3



2. Generalized Linear Model

The generalized linear model (GLM) was introduced by Nelder and Wedderburn
(1972) and discussed in detail in McCullagh and Nelder (1989). This approach
allows for regression modeling when the responses are distributed as one of the
members of the exponential family. The normal, Poisson, binomial, exponential,
gamma and negative binomial distributions are all members of the exponential
family. Except for the normal distribution, in a GLM the variance is a function
of the mean.
We have yt= [y1, y2, . . . , yn] a vector of independent observations, with vector

of means [μ1, μ2, . . . , μn]. The observation yi has a distribution that is a member
of the exponential family, that is

f (yi |ζi, φ) = exp {r(φ)[yiζ i − b(ζ i)] + c(yi, φ)} , (i = 1, 2, ..., n),
where r(), b(), and c() are specific functions depending on the family of distribu-
tions. The parameter ζi is called the natural location parameter, while φ is called
the dispersion parameter. The systematic part of the model involves the factors
of the experiment represented by the variables x1, ...xk. The model is built around
the linear predictor η = β0 + β1x1 + · · · + βkxk. The model is found through
the use of a link function ηi = g(μi), which relates the linear predictor with the
mean (μi) of the specified distribution for the response variable. The link func-
tion is monotonic and differentiable. The canonical link is such that ηi = ζ i. The
variance V ar(yi) is a function of μi.
The significance of the coefficients in generalized linear models is usually veri-

fied via the Wald test statistic, which is based on the asymptotic normality of the
maximum likelihood estimator. Each coefficient divided by the standard error is
distributed asymptotically standard normal. The square of these ratios is distrib-
uted asymptotically chi-square with one degree of freedom (χ21) . The performance
of the asymptotic quantile of these tests in small samples is not clear.
One recommendation given by Myers et al. (2002), p. 270, for the purpose

of detecting the active effects in GLM, is to draw the standardized coefficients
on a normal probability plot, but the usefulness of this graph depends on the
size of the correlations between the coefficients, as will be discussed later in more
detail with the examples. An alternative analysis would to use a link that leads
to uncorrelated estimators, if such a link exists. This results in asymptotically
uncorrelated estimators of the coefficients, which facilitates the interpretation of
the normal probability plot.
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3. Bayesian Model Selection

Consider a factorial experiment 2k without replications, where n = 2k is the total
number of observations. The problem is to detect the statistically significant
effects in the set of 2k − 1 = n − 1 effects. If we let m = 2n−1 − 1, then with
these n − 1 effects it is possible to construct 2n−1 models denoted by M0, M1,

M2,. . . , Mm where M0 is the constant model without variables. The model i is
associated with the vector of parameters θi = (βi0, βi1, ..., βiti). Let y be the
experimental observations or data vector. If the distribution of y given the model
is denoted by f(y |Mi,θi) , the prior probability of Mi by p(Mi) and the prior
probability density of θi is f(θi |Mi) , then the prior predictive density (ppd) of
y or integrated likelihood, given the model Mi, is

f(y |Mi) =

Z
Θi

f(y |Mi,θi)f(θi |Mi)dθi (1)

where Θi is the space set of θi. The posterior probability of the model Mi, given
the data y, is

p(Mi |y) =
p(Mi)f(y |Mi)

mP
h=0

p(Mh)f(y |Mh)
. (2)

The prior probability p(Mi) is computed as follows: let α be the prior probability
that any one effect is active, then form empirical evidence on fractional factorial
experiments, known as factor sparsity, (0 < α < 0.4), then the probability of
observing a model with ti significant effects will be taken as αti(1 − α)n−ti, Box
and Meyer (1993), which is proportional to (α/(1− α))ti .
Then the posterior probability that the effect Tj is active is computed by adding

the posterior probabilities of the models that contain this particular effect, that
is

Pj =
X

Mi:Tj is active

p(Mi |y) . (3)

The application of this procedure requires the calculation of the ppd (1) for a
large amount of models, which implies solving a multiple integral on the parameter
space. Frequently this is a complicated problem soluble only by numerical methods
or by using some analytic approximation Papageorgiou and Traub (1997). In this
work we propose to approximate the ppd by using two methods: Quasi-Monte
Carlo simulation and Bayesian information criteria (BIC). To get an idea of the
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amount of work consider that in the unreplicated design with 15 effects we need
to evaluate 215 = 32768 integrals. Of course, it is possible to reduce the number of
integrals by observing that, if the factor sparsity applies, the posterior probabilities
of interest converge to their values considering models of at most 4 or 5 terms.

4. Computing the Prior Predictive Density

4.1. Quasi-Monte Carlo Approach

The value of the integrated likelihood is viewed as the expected value of the
likelihood function with respect to the prior distribution of θi. This method ap-
proximates (1) by using low discrepancy sequences, Niederreiter (1992), instead of
pseudo random numbers. Hence if N values of θi are obtained from f(θi |Mi) and
the likelihood function is evaluated on each θi. The average of the N evaluations
of the function approximates the integrated likelihood, that is,

f(y |Mi) = bE[f(y |Mi,θi)] =
1

N

NX
j=1

f(y |Mi,θij) . (4)

Hence this approach requires the explicit specification of f(θi |Mi) . In order
to do that we assume that the parameters are independently normally distributed.
Consider first the parameter β0 which is linked to original scale by the relationship

β0 = g(μ0). (5)

In order to obtain a prior distribution for β0 notice that μ0 could have the
following two interpretations: first it could be considered the mean response when
none of the effects are significant, or if the factors in the experiment are continuous,
then it is the mean response when all the factors in the experiment are set to zero,
that is it is the mean response in the central region of the experiment. Notice
that μ0 is related with an observable characteristic in the experiment. Whatever
interpretation applies, this approach assumes that the experimenter has some
broad idea about the value of this mean response and it is stated in terms of a
probability interval of the form

P (Lμ < μ0 < Uμ) = 1− δμ, (6)

where Lμ and Uμ are a lower and upper bound for μ0, and δ is a small fraction,
say 5% or 1%. Assuming a strictly increasing link function from (5) and (6) it
follows that
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P (g(Lμ) < β0 < g(Uμ)) = 1− δμ (7)

Then, one way to fulfill (7) with a normal distribution is to take the parameters
for the prior density of β0 as

μβ0 =
g(Lμ) + g(Uμ)

2
; σβ0 =

g(Uμ)− μβ0
z1−(δμ/2)

(8)

where zξ is the ξ − th percentile of the standard normal distribution. If the link
function is strictly decreasing then μβ0 remains the same but σβ0 changes to

σβ0 =
g(Lμ)− μβ0
z1−(δμ/2)

.

For the rest of the parameters βi, 1 ≤ i ≤ k, we will assume a N(0, σ2β0)
distribution, where the zero mean is introduced since it is supposed that in advance
there is no information about the sign of the effect.
In the examples that we discuss later, for the case of the experiment with 15

effects, we use the Quasi-Monte Carlo approach for models with at most 4 terms
using N = 1000 quasi-random repetitions for each model. Thus, 1941 integrals
were approximated. We wrote an R program, R Development Core Team (2006),
for calculating (4) for each model: first we generate 1000 Halton numbers of
dimension 5, that are used to obtain samples from the prior distributions for the
parameters of models with 0-4 explanatory variables. The sample of parameters
for a specific model are evaluated in the likelihood function accordingly to the
model dimension and the average that represent the posterior probability of the
model is calculated.
In the much smaller experiment with 8 runs and 7 effects the integral is ap-

proximated for each of the total 128 possible models.

4.2. The BIC Approach

The integrated likelihood given in (1) can be approximated by using the Bayesian
information criteria. For details in the following development you can see Raftery
(1995). For simplicity the integral that we want to approximate can be rewritten
not mentioning the model, so (1) becomes

f(y) =

Z
f(y |θ) f(θ)dθ (9)
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Consider a Taylor series expansion of g(θ) = log {f(y |θ) f(θ)} about eθ the value
of θ that maximizes g(θ), i.e. the posterior mode, the integral of interest can be
approximated by

f(y) =

Z
exp [g(θ)] dθ (10)

≈ exp
h
g
³eθ´iZ exp

"
1

2

³
θ−eθ´t ∂2g(eθ)

∂θ∂θT

³
θ−eθ´# dθ.

The integrand in equation (10) is proportional to a multivariate normal density,
then

f(y) ≈ exp
h
g
³eθ´i (2π)d/2 |A|−1/2 (11)

where d is the number of parameters in the model and A = −∂2g(θ)

∂θ∂θT
. This equation

is the basis for the Laplace approximation approach, Bernardo and Smith (1994),
page 341. The error in the approximation is O(n−1), Tierney and Kadane (1986),
and so

log f(y) = log f(y |eθ) + log f(eθ) + (d/2) log(2π)− (1/2) log |A|+O(n−1). (12)

In large samples eθ ≈ bθ where bθ is the MLE, A ≈ nIF and |A| ≈ nd |IF | , where
IF is the expected Fisher information matrix for one observation. This is a d× d

matrix whose (i, j) element is −E
h
∂2 log f(y1|θ )

∂θi∂θj

¯̄
θ=θ

i
. These two approximations

introduce an error of order O(n−1/2) into equation (12), which becomes

log f(y) = log f(y |bθ)+log f(bθ)+ d

2
log(2π)− d

2
logn− 1

2
log |IF |+O(n−1/2). (13)

Assuming a multivariate normal prior f(θ) with mean bθ and variance matrix
I−1, called the unit information prior, Raftery (1999), we have

log f(bθ) = −(d/2) log(2π) + (1/2) log |IF | , (14)

and substituting this equation into (13) gives

log f(y) = log f(y |bθ)− (d/2) log n+O(n−1/2). (15)
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This last expression for log f(y) can be used to approximate the Bayes factor
B21 = f(y |M2)/f(y |M1), which on the scale twice the logarithm is

2 logB21 = 2
³
log f(y |bθ2,M2)− log f(y |bθ1,M1)

´
− (d2 − d1) logn+O(n−1/2).

(16)
If M1 is nested within M2 this equation becomes

2 logB21 ≈ χ221 − df21 logn (17)

where χ221 is the standard likelihood ratio test (LRT) statistic for testing M1

againstM2 and df21 = d2−d1 is the number of degrees of freedom associated with
the test.
When several models are being compared, it is useful to compare each of

them in turn with a baseline model, usually either the null model (M0) with no
independent variables or the saturated model (MS) with all independent variables,
into which each data point is fit exactly. When the saturated model MS is the
baseline model the LRT statistic in equation (17) is called the deviance.
The value of the Bayes information criterion (BIC) for modelMk, denoted by

BICk, is the approximation to 2 logBSk given by equation (17), where BSk is the
Bayes factor for model MS against model Mk. That is

BICk = D2
k − dfk logn (18)

whereD2
k = χ2Sk is the deviance for modelMk and dfk is the corresponding number

of degrees of freedom. Smaller BICk means that the fit ofMk is better. The built
in function "deviance" from R was used to compute (18).
In our case, we have the family of models {M0,M1, . . . ,Mm}, and we want

to approximate the posterior model probability p(Mk | y) given in (2) where
f(y |Mk) is the integrated likelihood. From (16) and (18), approximately, f(y |Mk) ∝
exp(−(1/2)BICk). Thus, the posterior probability p(Mk | y) in terms of BICḱs
is

p(Mk | y) ≈
p(Mk) exp(−12BICk)

mP
h=0

p(Mh) exp(−12BICh)
. (19)

Hence this procedure is expected to work better for larger samples and does
not require the specification of a prior density. Also the computation of (19) is
very fast.
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5. Poisson Response

Let yt= [y1, y2, . . . , yn] be the vector of observations, where yj is the number of
defects or events occurred in the treatment j. If E(yj) = μj then the density of
yj is

f(yj) =
1

yj!
exp(−μj)

¡
μj
¢yj .

For this family, the functions are: ζj = log(μj), b(ζj) = μj, r(φ) = 1, φ = 1, and
c(y, φ) = − log(y!). Hence the canonical link is ηj = log(μj). Consider the model
Mi with vector of parameters θi =

£
βi0, βi1, . . . , βiti

¤
and log link function given

by

g(μj) = log μj = x
t
jθi. (20)

Then under modelMi, and loglink function, the distribution of the observation
yj is

f(yj |Mi,θi) =
1

yj!
exp

³
−extjθi

´ ¡
exp(xtjθi)

¢yj . (21)

The likelihood function considering the n observations is

f(y |Mi,θi ) =
nY

j=1

1

yj!
exp

³
−extjθi

´ ¡
exp(xtjθi)

¢yj . (22)

∝ exp

Ã
nX

j=1

³
−extjθi + yjx

t
jθi
´!

As we have already mentioned, the use of the Monte Carlo approach assumes
that the experimenter should have some broad idea about μ0. We assume that
this knowledge is stated in the form of (6). Then using formulas (8) provides
values for the hyperparameters for the prior densities. In the case of the log link
the hyperparameters result

μβ0 =
log(Lμ) + log(Uμ)

2
; σβ0 =

log(Uμ)− μβ0
z1−(δμ/2)

(23)
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Thus, the if prior distributions are

β0 ∼ N(μβ0, σ
2
β0
) (24)

βi ∼ N(0, σ2β0).

Then the prior predictive distribution, f(y |Mi) , for the GLM Poisson with log
link is the expectation of

1Q
yj!
exp

Ã
nX

j=1

³
−extjθi + yjx

t
jθi
´!

,

when θi has a density N [(μβ0, 0, ..., 0)
T , σ2β0I], where I is the identity matrix of

dimension ti + 1. It is not possible to get a closed form expression of this expec-
tation. Hence, in order to compute the posterior probabilities of the models, the
value of the integral is approximated by using Quasi-Monte Carlo simulation. It
is customarily for this distribution to use the square root link, that is g(μ) =

√
μ,

then for this case the formulas for the hyperparameters become:

μβ0 =

p
Lμ +

p
Uμ

2
; σβ0 =

p
Uμ − μβ0
z1−(δμ/2)

(25)

and the likelihood function changes accordingly.
If the Bayesian information criteria approximation is used then no prior con-

sideration is required.

5.1. Example: Car Grille Experiment

This example corresponds to the example 7.5 of Myers et al. (2002) page 272 and
also is the example 1 from Myers and Montgomery (1997). The experiment is a
fractional factorial 29−5 with resolution III, which investigated the impact of nine
factors on the number of observed defects in the finishing of sheet-molded grille
opening panels. The experimental design, along with the observed defects and
some information about the alias structure, is shown in Table 1. The c column
contains the observed defects and the last column is the Freeman and Tukey
(FT =

¡√
c+
√
c+ 1

¢
/2) modification to the square root transformation that

was used in Bisgaard and Fuller (1994-1995) to analyze this data.
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# A B C D E F G H J c FT
1 −1 −1 −1 −1 1 −1 1 −1 1 56 7.52
2 1 −1 −1 −1 1 −1 −1 1 −1 17 4.18
3 −1 1 −1 −1 −1 1 1 −1 −1 2 1.57
4 1 1 −1 −1 −1 1 −1 1 1 4 2.12
5 −1 −1 1 −1 1 1 −1 1 1 3 1.87
6 1 −1 1 −1 1 1 1 −1 −1 4 2.12
7 −1 1 1 −1 −1 −1 −1 1 −1 50 7.12
8 1 1 1 −1 −1 −1 1 −1 1 2 1.57
9 −1 −1 −1 1 −1 1 1 1 1 1 1.21
10 1 −1 −1 1 −1 1 −1 −1 −1 0 0.50
11 −1 1 −1 1 1 −1 1 1 −1 3 1.87
12 1 1 −1 1 1 −1 −1 −1 1 12 3.54
13 −1 −1 1 1 −1 −1 −1 −1 1 3 1.87
14 1 −1 1 1 −1 −1 1 1 −1 4 2.12
15 −1 1 1 1 1 1 −1 −1 −1 0 0.50
16 1 1 1 1 1 1 1 1 1 0 0.50
l1 = A+BJ + CG
l2 = B +AJ +DE
l3 = C +AG+EF
l4 = D +BE +GH
l5 = E +BD + CF
l6 = F + CE +HJ
l7 = G+AC +DH
l8 = H +DG+ FJ

l9 = J +AB + FH
l10 = AD + CH + EG
l11 = AE + FG+ JD
l12 = AF +BH +EG
l13 = AH +BF + CD
l14 = BC +DF +GJ
l15 = BG+ CJ +EH

Table 1. Data Car Grille Experiment.

5.2. Frequentist Analysis

We present the results of the frequentist analysis for reference. The analysis of
FT by Bisgaard and Fuller (1994-1995) declares active the effects D, F and the
BG + CJ + EH alias chain. Myers and Montgomery (1997) analyze the data
with a Poisson model with log link function and they found these same significant
effects, using Wald inference. Myers et al. (2002) redo the analysis using log
and square root links functions. Figure 1 shows the corresponding half-normal
probability plot of the standardized coefficients for the log link.
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Figure 1: Car Grille Experiment. Half-normal probability plot of standardized
effects. Poisson log link.

Figure 1 suggests that the effects F, D, and BC are clearly significant, while
the effect BG is barely significant. They conclude, with the log link, that the
active effects are D, F and BC +DF + GJ . Figure 2 shows the corresponding
half-normal probability plot of the standardized coefficients for the square root
link.

Figure 2 shows as active effects F and D as before, but BG+CJ +EH that
was not very significant before now it is clearly significant. The effect BC that was
clearly significant before now it is not significant, and a new effect AD appears
barely significant. Hence the results are different for the two link function. Myers
et al. (2002) conclude, based on the residual analysis of each model, that the
model with square root link fits the data better.
Myers et al. (2002) also include the covariance and correlation matrices for

both links, but they do not seem to use them. According to the covariance matrix
for the log link, Figure 1, corr(D,BC) = 0.9999788 , hence it is very likely that
BC is not significant but it was pulled out by D which is significant. Also, in
the same Figure 1, BG which is significant could have been pulled in by A which
is non significant since also corr(A,BG) = 0.9999788. For Figure 2 Myers et
al. (2002) report that the correlation matrix is the identity and hence no pulling
effect is expected.
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Figure 2: Car Grille Experiment. Half-normal probability plot of standardized
effects. Poisson square root link.

5.3. Bayesian Analysis.

For the Quasi Monte Carlo approach let us assume a broad interval for μ0 say
0.5 < μ0 < 50 with 99% probability, hence δμ = 0.01. Then considering the
Poisson GLM with log link and formulas (23) give

μβ0 = 1.61;σβ0 = 0.89,

similarly, with the square root link (25) give the corresponding hyper-parameters
for the prior distribution of β0 as

μβ0 = 3.89;σβ0 = 1.24.

The integrated likelihood in each model was approximated with 1000 quasi-
random number (Halton sequences) evaluations to simulate values for the para-
meters β0 and βi. Assuming the factor sparsity principle, only models up to 4
independent terms are considered (1941 models). Also a prior probability α = 0.2
of active effect was assumed. The posterior probabilities of the effects assuming
the Poisson model with log link are shown in the first row of Table 2. Clearly
the active effects are F, D and BG. The second row of Table 2 shows the results
obtained for the Poisson model with square root link. Hence with the Monte Carlo
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method, the same effects F, D and BG (and its alias), are detected as active and
none of the other interactions AD or BC appeared to be significant.

Method 0 A B C D E F G
MClog 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0
MCroot 0.0 0.0 0.0 0.0 0.99 0.0 0.98 0.0
BIClog 0.0 0.07 0.03 0.02 1.0 0.2 1.0 0.03
BICroot 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0

Method H J AD BC CD BG AE AF
MClog 0.0 0.0 0.03 0.03 0.0 0.96 0.0 0.0
MCroot 0.0 0.0 0.0 0.01 0.0 0.98 0.0 0.1
BIClog 0.01 0.01 0.05 0.02 0.02 0.99 0.03 0.02
BICroot 0.0 0.0 0.97 0.01 0.0 0.99 0.0 0.01

Table 2. Car Grille Experiment. Poisson Model. Posterior Probabilities of Being
Active.

The rows of Table 2 that represent the results of the BIC approximation for
the log and square root links, were made by using also a prior probability α = 0.2
of an effect being active. Although the BIC approximation is significantly less
computer intensive, the posterior probabilities are based, as in the Quasi-Monte
Carlo approach, in models from 0 to 4 independent terms (1,941 models). For the
log link the detected active effects are D, F and BG. With the square root link
function the same active effects are detected, but the effect AD appears also as
active. This agrees with Figure 2 in the frequentist analysis, but disagrees with
the quasi-Monte Carlo approach with the same link function. Hence the Bayesian
methodology implemented with the Monte Carlo was the only method that showed
consistency for both link functions.

6. Binomial Response

Consider an experiment with binary response, let yj be the number successes
observed out of nj trials (j = 1, 2, ..., n), processed at treatment j. Let pj be the
probability of success with the treatment xj. The density of yj is
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f(yj) =

µ
nj
yj

¶
(pj)

yj (1-pj)nj−yj .

In this case the GLM applies to yj/nj and for this family, the functions
are: ζj = log(

pj
1−pj ), b(ζj) = log(1 + ζj), r(φ) = 1, φj = 1/nj, and c(yj, φ) =

log

µ
nj
yj

¶
. Hence the canonical link is ηj = log(

pj
1−pj ). Therefore the logistic

regression model can be written in the form

p(xj) =
1

1 + e−x
t
jθ
=

ex
t
jθ

ex
t
jθ + 1

, (26)

where θ = (β0,β1, . . . ,βk) is the parameter vector in the linear predictor. Alter-
natively, the model can be written in the linearized form given by

ln

∙
p(xj)

1− p(xj)

¸
= xtjθ. (27)

The distribution of yj given the model Mi with parameter θi is defined as

f (yj |Mi ,θi) =

µ
nj
yj

¶
(pi)

yj (1− pi)
nj−yj =

µ
nj
yj

¶µ
pi

1− pi

¶yj

(1− pi)
nj(28)

=

µ
nj
yj

¶³
eyjx

t
jθi
´µ 1

1 + ex
t
jθi

¶nj

.

Ignoring the combinatorial factor, the likelihood function for the n observations
is given by

f (y |Mi ,θi) ∝
nY

j=1

³
eyjx

t
jθi
´µ 1

1 + ex
t
jθi

¶nj

(29)

Once again, we make the mild assumption that the experimenter has some
vague idea on the proportion of defectives p0. That is we expect an interval of the
form Lp < p0 < Up and some probability associated to this interval, say 1 − δp.
In this case the link function is given in terms of

ηi = log

µ
pi

1− pi

¶
,

hence we have the relation
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β0 = log

µ
p0

1− p0

¶
= g(p0),

and the formulas (8) can be applied directly to obtain the hyperparameters as
follows, since the link function is increasing:

μβ0 =
log( Lp

1-Lp
) + log( Up

1−Up )

2
; σβ0 =

log( Up
1−Up )− μβ0
z1−(δp/2)

, (30)

Notice that if the interval Lp < p0 < Up is symmetric around 0.5 then μβ0 = 0.
Considering again the prior normal distribution with mean zero and variance σ2β0
for the parameters in the model Mi that multiply the independent variables, the
prior predictive density, f(y |Mi) , is the expectation of

nY
j=1

³
ex

t
jθi
´yj µ 1

1 + ex
t
jθi

¶nj

when θi has a density N [(μβ0, 0, ..., 0)
T , σ2β0I].

6.1. Example: Survival of Sperm Experiment.

This experiment, Myers, et al. (2002) page 116, is about the survival of sperma-
tozoa in a sperm bank, stored in sodium citrate and glycerol. The amounts of
these substances were varied along with equilibrium time in a factorial array. The
response variable is the number of samples that survive, meaning that the sample
has the ability to impregnate. Fifty samples of material were used in each exper-
imental point. The purpose of the study is to assess the effects of the factors on
proportion of survival. The data are given in Table 2, where the column labeled
Y gives the number of samples that survived.
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A (Sodium Citrate) B (Glycerol) C (Equilibrium Time) Y
−1 −1 −1 34
1 −1 −1 20
−1 1 −1 8
1 1 −1 21
−1 −1 1 30
1 −1 1 20
−1 1 1 10
1 1 1 25

Table 3. Data from Survival of Sperm Experiment.

In the frequentist analysis Myers et al. (2002) find, using Wald test, that the
active effects are B (glycerol) and AB (interaction of sodium citrate and glycerol).
Assuming a broad interval for p0, say 0.1 < p0 < 0.9 with probability of 99% then
the following hyperparameters are obtained using (30)

μβ0 = 0; σβ0 = 0.85.

Table 4 is obtained with a prior probability of active effect α = 0.2. Clearly the
effects B and AB are active, with posterior probabilities almost equal one, while
the other effects have smallish posterior probabilities. This result agrees with the
frequentist analysis. The BIC approximation detects the same active effects B
and AB.

Effect 0 A B C AB AC BC
MC 0.0 0.02 0.99 0.03 0.99 0.03 0.06
BIC 0.0 0.02 0.99 0.01 0.99 0.01 0.02

Table 4. Sperm Survival Experiment. Logistic Model. Posterior Probabilities of
Being Active

6.2. Example: Simulated Binomial Experiment.

This example is presented to test the procedures in the case of a small sample
within treatments but a large sample of treatments. The example is motivated by
the discussion of the assumptions on the deviance function to work as a goodness
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of fit test given in section 4.4.3 of McCullagh and Nelder (1989). In that section
they mention that a crucial assumption is that n the dimension of the vector of
observations remains fixed and that for each j, nj →∞ and njpj(1− pj)→∞.
In our example we use an unreplicated 25−1 experiment, the fraction considered

is ABCDE = +1, hence n = 16 and nj = 10 for every j. The design matrix along
with the simulated responses are given in Table 5. The linear predictor is given
by the following equation

η = 2A− 3B + 3C + 2BC

run A B C D E Y
1 1 1 1 1 1 1
2 -1 -1 1 1 1 3
3 -1 1 -1 1 1 10
4 1 -1 -1 1 1 0
5 -1 1 1 -1 1 3
6 1 -1 1 -1 1 0
7 1 1 -1 -1 1 10
8 -1 -1 -1 -1 1 5
9 -1 1 1 1 -1 4
10 1 -1 1 1 -1 0
11 1 1 -1 1 -1 10
12 -1 -1 -1 1 -1 3
13 1 1 1 -1 -1 1
14 -1 -1 1 -1 -1 0
15 -1 1 -1 -1 -1 10
16 1 -1 -1 -1 -1 0

Table 5. Simulated Binomial Experiment.

Although there is a clear effect of the explanatory variables on the response,
the frequentist approach via GLM does not work well, since the built in function
in R that fits the GLM converged to unseasonable results, particularly for the
models that contained the significant effects.
Now consider the Bayesian approach using Monte Carlo to compute the pos-

terior probabilities. We take the interval for p0 as 0.1 < p0 < 0.9 with probability
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of 99%, then the following hyperparameters are obtained using (30)

μβ0 = 0; σβ0 = 0.85.

Table 6 shows that in this case the MC approach identified correctly all of the
significant effects.

Eff. 0 A B C D E AB AC AD AE BC BD BE CD CE DE
MC 0.0 0.93 1.0 0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0 0.0
BIC 0.0 0.98 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.98 0.0 0.0 0.0 0.0 0.0

Table 6. Simulated Binomial Experiment. Logistic Model. Posterior Probabilities of
Being Active.

Using the BIC approach caused some problems, because this procedure fits a
GLM every time that computes a BIC measure, then in some cases the program
gives senseless adjusted models, particularly when the model is one of the 12 mod-
els that contains three out of the four significative effects. Nevertheless, because
the procedure is averaging over 1940 models, in the end the posterior probabilities
shown in Table 5 identify the correct simulated effects.

7. Gamma Response

Let yj be the response of the experiment under treatment j. It is assumed that
the density of yj is given by

f(yj) =
1

Γ(r)λj
e−yj/λjyr−1j (31)

then Myers et. al (2002) give a(φ) = r−1, ζj = − 1
rλj

, b(ζj) = − log(−ζj) and
c(yj, φ) = r log(r)−Γ(r)+(r−1) log(yj). This model assumes that the parameter
r is the same for all observations. But E(yj) = μj = rλj hence the canonical link
is g(μj) =

1
μj
= ηj but this link is not used since some estimates may give negative

values for ηj. Then a log link will be used, that is log(μj) = ηj.
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In order to obtain a prior distribution for β0 the procedure is the same as the
one given in section 4.1 using the log link. Hence formulas (23) apply here too.
We considered again the prior normal distribution with mean zero and variance
σ2β0 for the parameters in the model Mi that multiply the independent variables.
But now we have the additional parameter r. It is well known that V ar(yj) =

μ2j
r
hence the coefficient of variation of yj is given by: CV (yj) =

√
V ar(yj)

μj
= 1√

r
.

To get a prior distribution for r we assume that a probability interval for the
coefficient of variation of the response is available, that is there are constants Lc,
Uc , and δc such that

P (Lc < CV (y) < Uc) = 1− δc,

then

P (
1

U2
c

< r <
1

L2c
) = 1− δc, (32)

since r is a positive, we assume a two parameter Γ(a, b) distribution. In order to
fulfill (32) we need to solve in (a, b) the following system of nonlinear equations:

P (Γ(a, b) <
1

U2
c

) = wδc and P (Γ(a, b) >
1

L2c
) = (1− w)δc (33)

where 0 < w < 1 is a weight that in the example we took as 0.5. We solved (33)
by minimizing

Qw(a, b) =

∙
P (Γ(a, b) <

1

U2
c

)− wδc

¸2
+

∙
P (Γ(a, b) >

1

L2c
)− (1− w)δc

¸2
,

with respect to (a, b). A possible strategy is to start with w = 0.5 and if a solution
is not found then iterate on w.
In order to obtain the prior predictive density in terms of the GLM we repa-

rameterize (31) as a function of μj :

f(yj) =
rr

Γ(r)μrj
e−ryj/μjyr−1j

and since μj = ex
t
jθi then
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f (yj |Mi ,θi, r) =
rr

Γ(r)
e−rx

t
jθie−ryje

−xtjθi
yr−1j

finally the prior predictive density, f(y |Mi) , is the expectation ofµ
rr

Γ(r)

¶n

e−rΣ
n
j=1x

t
jθie−rΣ

n
j=1yje

−xtjθi
Yn

j=1
yr−1j (34)

when θi has a density N [(μβ0, 0, ..., 0)
T , σ2β0I], and r is independent and has a

Γ(a, b) density. In the case of a 2k fraction, (34) slightly simplifies to:µ
rr

Γ(r)

¶n

e−rnβ0e−rΣ
n
j=1yje

−xtjθi
Yn

j=1
yr−1j

7.1. Example: Drill experiment.

This example appeared in Daniel (1976), it is an unreplicated 24 experiment, the
factors define drilling conditions: A (Load), B (Flow), C (Speed), and D (Mud
type), and the response is drill advance. The data is given in Table 7.

Table 7. Data from Drill Experiment.

Run A B C D y
1 −1 −1 −1 −1 1.68
2 1 −1 −1 −1 1.98
3 −1 1 −1 −1 3.28
4 1 1 −1 −1 3.44
5 −1 −1 1 −1 4.98
6 1 −1 1 −1 5.70
7 −1 1 1 −1 9.97
8 1 1 1 −1 9.07
9 −1 −1 −1 1 2.07
10 1 −1 −1 1 2.44
11 −1 1 −1 1 4.09
12 1 1 −1 1 4.53
13 −1 −1 1 1 7.77
14 1 −1 1 1 9.43
15 −1 1 1 1 11.75
16 1 1 1 1 16.30
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The analysis of the original response favors strongly the significance of C and
B effects, and then there is a slight evidence of significance of D, BC and CD. A
graphical analysis of the residuals of the model suggests that the variance depends
on the level of the response. Box, Hunter and Hunter (1978) use this example to
illustrate the technique of power transformation to induce constancy of variance,
they arrive to the log transformation. The normal plot of the effects of log drill
advance suggests that effects C, B and D are significant. Aguirre (1993) analyzed
this data using the rank transformation of the original data and using the Daniel
plot of the effects taking the ranks as response, and found the effects C, D and B
to be significant. Then Lewis et. al. (2001) analyzed the data with a GLM and
a log link, using the half normal probability plot of the standardized effects, they
find evidence that effects B, D and C are clearly significant.
For the Bayesian analysis, using the Monte Carlo approach we assume an

interval for μ0 of [0.5, 12] with 95% probability, this interval seems reasonable
from the data, (23) produces the following parameters

μβ0 = 0.90; σβ0 = 0.81.

For the coefficient of variation we computed first a global value with sy
y
= 0.68,

hence we chose the interval of [0.15, 3.6] with 95% probability. This interval allows
a variation of 5.3 times above (Uc/0.68) and 4.5 times below (0.68/Lc) which gives
a broad range of variation for the unknown CV. After solving (33) with w = 0.5,
we get the hyperparameters

a = 0.72; b = 14.47.

Using these values for the quasi Monte Carlo method produces the results in
table 8.

Eff. 0 A B C D AB AC AD BC BD CD
MC 0.0 0.0 0.99 0.99 0.01 0.0 0.0 0.0 0.0 0.0 0.0
BIC 0.3 0.06 0.1 0.44 0.07 0.06 0.06 0.06 0.06 0.06 0.06

Table 8. The Drill Experiment. Gamma Model. Posterior Probabilities of Being
Active.

Consider the MC approach, the results are as expected with respect to the
significance of C and B, however they are a bit surprising regarding the effect
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D. Somehow when all possible models are considered the effect of D vanishes.
Then how come D was clearly significant using the frequentist analysis? the
asymptotic correlation matrix of the effects is diagonal for the gama distribution
and the loglink, but sixteen observations is hardly a large sample, perhaps the
small sample correlation matrix differs significantly from a diagonal matrix and
we are observing a pull out effect. We conducted a sensitivity analysis of the
posterior probabilities by changing the length of the intervals but the results were
basically the same.
The results from the BIC approach in this case were completely different to the

results of the previous analysis, very likely this outcome has to do with the fact
that the BIC approach approximates the likelihood with a multivatiate normal
density, something that seems to be grossly incorrect with the gamma model.

8. Concluding Remarks

In this paper we propose a method based on Bayesian model selection for de-
tecting the active effects in unreplicated factorial experiments when the response
variable is modeled by a GLM. For computing the posterior probabilities that the
effects are active, the difficult step is to solve the multiple integral that defines
the integrated likelihood. Once this integral is solved it is quite easy to obtain
the posterior probabilities of all possible models and from here to compute the
posterior probabilities for the effects.
Two approximations of the integrated likelihood were considered. The Quasi-

Monte Carlo simulation approach and the BIC approach. Both approximations to
the integrated likelihood gave good results in the discussed Poisson and binomial
examples. The Quasi-Monte Carlo approach is more accurate because it is a direct
integration of the function of interest, while the BIC approach is the Laplace
approximation for the integrated likelihood. The Quasi-Monte Carlo approach
requires the mild assumption that the user has some vague idea about the mean μ0,
the BIC approach does not. For the gamma model the MC approach additionally
requires a probability interval for the coefficient of variation of the response.
The BIC approach has an advantage in the computing time compared with

the Quasi-Monte Carlo approach. The former needs half a minute to compute
the posterior probabilities for the 1941 models, while the second takes 23 minutes
for the same calculation with 1000 simulation points for each integral. In the
BIC approach it is not necessary to elicit any prior distribution. Implicitly the
procedure is assuming a multivariate normal prior distribution for the parameters,
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centered on the maximum likelihood estimate and variance equal to the inverse
Fisher information matrix. The BIC approach did not work well in the case of
the gamma response, most likely due to the skewness of this distribution.
In general one may say that the Bayesian approach showed a better perfor-

mance than the usual method of analysis, particularly in those situations where
the large sample assumptions do not hold.
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